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Abstract

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be

estimated to determine food requirements and energy expenditure of killer whales (Orcinus

orca) and other cetaceans. This relatively simple measure also allows the energetic conse-

quences of environmental stressors to cetaceans to be understood but requires knowing

respiration rates while they are engaged in different behaviours such as resting, travelling

and foraging. We calculated respiration rates for different behavioural states of southern

and northern resident killer whales using video from UAV drones and concurrent biologging

data from animal-borne tags. Behavioural states of dive tracks were predicted using hierar-

chical hidden Markov models (HHMM) parameterized with time-depth data and with labeled

tracks of drone-identified behavioural states (from drone footage that overlapped with the

time-depth data). Dive tracks were sequences of dives and surface intervals lasting� 10

minutes cumulative duration. We calculated respiration rates and estimated oxygen con-

sumption rates for the predicted behavioural states of the tracks. We found that juvenile

killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to rest-

ing (1.2) and foraging (1.5)—and that adult males breathed at a higher rate when travelling

(1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were esti-

mated to consume 2.5–18.3 L O2 min-1 compared with 14.3–59.8 L O2 min-1 for adult males

across all behaviours based on estimates of mass-specific tidal volume and oxygen extrac-

tion. Our findings confirm that killer whales take single breaths between dives and indicate

that energy expenditure derived from respirations requires using sex, age, and behavioural-

specific respiration rates. These findings can be applied to bioenergetics models on a beha-

vioural-specific basis, and contribute towards obtaining better predictions of dive behav-

iours, energy expenditure and the food requirements of apex predators.

Introduction

Cetaceans, like all mammals, consume oxygen as they breathe to sustain cellular respiration

and provide energy needed for physiological functions and activities. As such, the metabolism

and amount of energy animals expend can be determined from the amounts of oxygen they
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consume (L O2 min -1)—which can be directly measured using respiratory calorimetry sys-

tems, or indirectly estimated from numbers of breaths taken [1]. Obtaining indirect estimates

of oxygen consumption requires 1) monitoring respiratory rates (the number of breaths per

minute), 2) calculating the tidal volume (the amount of air inhaled and exhaled during a single

breath at rest), and 3) estimating the efficiency of gas exchanges in the lungs—all of which can

be directly observed, measured, or estimated [1–3]. Counts of breaths (and associated changes

in breathing rates that might occur over time) can also be used to guide conservation efforts to

protect cetaceans and their habitats, as well as provide insights into the health of cetaceans and

the impacts that human activities have on them.

Respiration rates are increasingly being used as an indirect means to calculate field meta-

bolic rates, oxygen consumption and energy expenditure of cetaceans in the wild [4–6].

Breaths can be easily counted each time an animal surfaces [4,7,8], and can be averaged over a

series of dives to calculate respiration rates [3]. Respiration rate can then be used to indirectly

calculate oxygen consumption after making assumptions about the physiology of free-ranging

cetaceans, which can ultimately be used to estimate prey requirements [2,3].

Killer whales (Orcinus orca) are thought to only take a single breath between dives. Previous

studies have estimated oxygen consumption of free-ranging killer whales based on qualitative

field observations [9] or acoustic recordings that captured respirations [10]. Assuming that

killer whales only take single breaths between surface intervals means that counting surfacings

from time-depth data is equivalent to counting breaths, which allows for surfacing intervals to

be used to estimate energy expenditures. However, this has not been explicitly validated. Nor

is it known whether the assumed single breath applies to all behavioural states (e.g., travelling,

foraging, and resting).

Activity-specific metabolic rates are needed to parameterize bioenergetic models that esti-

mate the differing amounts of energy cetaceans require to support the different activities they

engage in each day. These can be obtained by knowing the volume of air inhaled and how

much oxygen is exchanged per breath—as well as knowing the relationship between respira-

tion rates and different behaviours such as travelling, foraging and resting. Oxygen exchange

can be determined from trained animals [3], and activity budgets can be derived from boat-

based focal follows [8] or from land-based tracking of individual whales [3–5]. However, cate-

gorizing behaviours of killer whales from boats and land—in the absence of subsurface data or

observations—is prone to uncertainty related to unknown underwater behaviour.

One means to comprehensively identify cetacean behaviours and estimate concurrent res-

piration rates is to categorize the movements of cetaceans from data recorded by animal-borne

biologging tags [11]. However, attempts to identify behaviours using kinematic variables,

time-depth data, and Hidden Markov models (HMMs) have tended to categorize abstract

activity states (e.g. State 1, 2 and 3) rather than biologically meaningful behavioural states [e.g.,

foraging, travelling and resting; 12–15]. Such descriptions and assertions of behavioural states

derived from analysis of movements (e.g., HMMs) need validation, as well as clearly defined

functions that are biologically meaningful to be useful for predicting energetic costs.

Many analyses have applied HMMs to cetacean data to predict behaviors that occurred dur-

ing individual dives lasting a few minutes rather than describe behaviours that occur over lon-

ger sequences of dives lasting 10 minutes or more [12–16]. Unfortunately, counting breaths

over short durations can result in inaccurate predictions of energy expenditure if animals have

not had enough time to off-load CO2 and balance their O2 stores [17–19]. In the case of killer

whales, respiration rates should be calculated over durations� 10 minutes to avoid biased and

inaccurate estimates of metabolic rates [3,4,8]. Fortunately, HHMMs (i.e., Hierarchical

HHMMs) have been developed that can simultaneously categorize behaviours at multiple

PLOS ONE Killer whale respiration rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0302758 May 15, 2024 2 / 26

Fund. E.S. thanks the University of British Columbia

for funding provided via the Four-Year Doctoral

Fellowship program. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0302758


temporal scales [i.e., they can jointly define individual fine-scale dive types and coarse-scale

behaviours of tracks comprised of several dives; 14,20].

We sought to determine the respiration rates of killer whales and how they differ by beha-

vioural state by counting total breaths per surface interval observed on drone videos for differ-

ent behavioural states occurring over durations� 10 minutes. We then matched these drone

video labels to time-depth data from animal-borne tags to inform an HHMM to predict

whether tracks of dives were associated with resting, travelling, or foraging behavioural states.

Output from the HHMM was then used to calculate behavioural-specific respiration rates, and

estimate oxygen consumption for both adult male and juvenile resident killer whales. Our

methodology to quantify killer whale behaviours, and our estimates of respiration rates can be

applied to bioenergetics models on a sex, age, and behavioural-specific basis—and contribute

to assessing the impacts of human activities on killer whales by providing a new method to

accurately determine what whales are doing based solely on dive-depth data, and a better

means to obtain estimates of energy expended by free-ranging killer whales under changing

conditions.

Materials and methods

Data collection

We collected data from 11 northern and southern resident killer whales (Orcinus orca) in

August 2020 off the coast of British Columbia in Queen Charlotte Sound, Queen Charlotte

Strait, Johnstone Strait, and Juan de Fuca Strait (Table 1). Whale ID, sex, birth year and age as

of 2020 were determined from catalogues of known individuals [21,22]. All 11 animals carried

video cameras and time-depth dataloggers (CATS tags, Customizable Animal Tracking Solu-

tions, www.cats.is), and 8 of the killer whales were simultaneously followed using an

unmanned aerial vehicle (UAV) drone. We categorized whales into age classes with juveniles

defined as 4–12 years, adult males > 13 years, and adult females as> 12 years with a recorded

birth [7,23,24]. One of the females we tagged (R48) did not have a calf during tag deployment

Table 1. Summary of data collected on 11 resident killer whales.

Whale

ID

Sex Type Birth

year

Age Age class Tag date

2020

Total surface intervals on

drone

Total surface intervals on

CATS tag

CATS tag attachment duration

(hours)

A113 Female NRKW 2016 4 Juvenile Aug. 22 264 872 7.4

R48 Female NRKW 2006 14 Adult Aug. 28 30 310 4.7

A100 Unknown NRKW 2011 9 Juvenile Aug. 20 4 356 3.6

R58 Unknown NRKW 2011 9 Juvenile Aug. 28 20 94 1.4

I145 Unknown NRKW 2014 6 Juvenile Aug. 30 12 461 5.1

D26 Unknown NRKW 2010 10 Juvenile Aug. 31 59 575 6.4

I129 Unknown NRKW 2009 11 Juvenile Aug. 30 No video 495 6.2

I107 Male NRKW 2004 16 Adult Aug. 25 66 1378 12.3

D21 Male NRKW 2005 15 Adult Aug. 31 21 1812 19.9

L87 Male SRKW 1992 28 Adult Sept. 10 No video 963 8.7

L88 Male SRKW 1993 27 Adult Sept. 10 No video 802 8.3

Total = 476 Total = 8118

Whale ID’s, sexes, birth years, ages, and age class [21–23] of nine northern (NRKW) and two southern resident (SRKW) killer whales equipped with biologging devices.

Total individual dives on animal borne tags were 3163 for juveniles and 4955 for adult males. Also shown are the number of individual surface intervals (equivalent to

the number of individual dives) recorded by the drone video and animal-borne tag for each whale, along with animal-borne tag attachment durations. Animals tagged

on the same days did not have synchronous breathing and were treated independently.

https://doi.org/10.1371/journal.pone.0302758.t001
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but was later identified as an adult female after a calf attributed to her was added to the cata-

logue. Based on her body mass and young age at the time of tagging, as well as preliminary sta-

tistical analysis, we included R48 in our juvenile category (See S2 Appendix for details). All

killer whale data were collected under The University of British Columbia Animal Care Permit

no. A19-0053 and Fisheries and Oceans Canada Marine Mammal Scientific License for Whale

Research no. XMMS 6 2019.

Time-depth data collection. We tagged animals with suction cup CATS biologgers that

were equipped with time-depth recorders, forward-facing underwater cameras, passive acous-

tic recorders (96 kHz), tri-axial accelerometers, magnetometers, gyroscopes, and satellite

telemetry for asset retrieval. To deploy the animal-borne tags, a small vessel approached the

focal group of killer whales and waited for a killer whale to surface near the vessel. Animal-

borne tags were temporarily attached using suction cups and an adjustable 8m long carbon-

fiber pole. Location of tag attachment varied, but preference was given near the base of the ani-

mal’s dorsal fin. The animal-borne tags continuously recorded dive movements for the dura-

tion of time the tag was attached. The animal-borne tags remained attached from 1.4 to 19.9

hours (Table 1). Following each tagging event, a focal follow was conducted until daylight was

lost or the tag detached via galvanic release. During the follows, aerial drone flights (Inspire2)

occurred to obtain video and still images of the tagged whale.

Behavioural states and respiration data observed from drones. We collected video data

from a UAV (i.e., drone) for 8 of the 11 whales carrying the animal-borne tags. Once an indi-

vidual was successfully tagged, we deployed a drone to follow the whale and take video footage

at the surface. Due to battery limitations and the inability of the drone to capture video below

the surface, the drone video data collected were not random subsamples of all dives recorded

by the animal-borne tags and were biased towards shallower dives. We did collect drone video

data on deeper and longer duration dives (up to 58 m), but these dive types did not have the

same probability of being captured on the drone video as the shallower dives. This was due to

the drone often losing track of the focal whale during deeper longer dives because of the diffi-

culty of anticipating where the whale would surface.

Behavioural states of the tagged whales were categorized from drone video footage. Each

tagged whale had a different coloured animal-borne tag that was visible from the drone video

to confirm the whale identification matching the drone to the correct tag. We used the drone

video footage to visually count the total breaths per surface interval and categorize the beha-

vioural state of each individual dive the whales performed (Fig 1 and Table 2). We defined

each dive as being either resting, travelling, or foraging using modified behavioural definitions

previously described for resident killer whales [8,9,25]. We excluded socializing and milling

from our analysis because they were not mutually exclusive to the other behavioural states, and

rarely occurred among the eight tagged animals with drone footage. As well, we observed and

recorded when logging behaviour (i.e. when whales remain relatively motionless on the sur-

face) occurred on drone; however, this behaviour rarely occurred and therefore was not

included as a behavioural state in further statistical comparisons.

If the behavioural state observed at the surface on the drone video did not meet the defining

criteria in Table 2, we classified those surface intervals as “unidentified” and removed them

from analysis (n = 28 total surface intervals removed as unidentified). These “unidentified”

behavioural states comprised a comparatively small proportion of all behavioural states

observed on the drone video (5.6% out of 504 total respirations were unidentified). The

unidentified behavioural states appeared to occur randomly among seven of the eight animals

with available drone video.

Time-depth and video data processing and synchronization. Dives and surface intervals

were defined for all dives observed on both drone footage and animal-borne tags. Dives and
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surface intervals were defined with a 0.5 m minimum dive threshold on time-depth data at 2

Hz [26]. The dives and surface intervals identified in the drone videos were matched to corre-

sponding dives on the animal-borne tags in R based on the start and end times of the individ-

ual dives. Accuracy of matching was verified by visual plots for each animal for all dives.

Additional details about the drone and TDR data processing and synchronization are con-

tained in S1 Appendix.

Table 2. Defined behavioural states of northern and southern resident killer whales observed on drone video.

Behavioural

state

Definition

Travelling Moving in the same general direction between surfacings at a constant pace of moderate speed,

often with other whales present in a group. Very consistent dive and surface interval durations

with more consistent depth. Max dive depth travelling was qualitatively less variable compared to

foraging.

Foraging Not moving in the same general direction and not moving at a constant pace of moderate speed;

often with longer dives between surfacings; often dolphins are present; often the focal whale is

alone or with few other whales. Max dive depth foraging was more variable than travelling based

on video observations. Often observed whale’s body arching at the surface before performing a

deep dive indicated by losing visibility of whale below surface.

Resting Swimming at a very slow speed with other whales present in a group; not making any significant

progress in one direction; includes shallow diving.

Logging Stationary at the surface with other whales present in a group; synchronized breathing within the

group; does not include shallow diving and surfacing (blowhole may or may not be submerged; a

portion of the dorsal fin remains above the water).

Travelling, foraging, resting, and logging were defined according to definitions used in previous killer whale studies

[8,9]. See methods for details.

https://doi.org/10.1371/journal.pone.0302758.t002

Fig 1. Still images from UAV drone video showing datalogger placement and respiration. Photographs showing the animal-borne datalogger attached with suction

cups to a juvenile northern resident killer whale (A113). Views show (A) the whale’s breath immediately after surfacing, (B) mid-blow, and (C) after the blow has

dissipated. Photo credit: Keith Holmes.

https://doi.org/10.1371/journal.pone.0302758.g001
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Statistical analysis

Hidden Markov models to predict track behavioural states. Drone video allowed us to

visually determine the behavioural state associated with many dives, but we only had drone

video observations on * 6% of the total dives that killer whales performed (n dives with

video = 476; n total dives on 11 whales = 8118, Table 1). We therefore developed and fitted

hierarchical hidden Markov models (HHMMs) that used animal-borne time-depth data along

with behavioural states directly observed on the drone video to predict the behavioural states

of a dive track in a single hierarchical process [14]. We defined a track as the shortest continu-

ous sequence of complete dives and surface intervals that was� 10 min in cumulative duration

(i.e., the sum of all the individual dives and surface intervals in that track). The HHMM mod-

eled the sequence of track behaviours as a partially observed Markov chain and modeled the

sequence of individual dives within a track as another partially observed Markov chain whose

dynamics depended upon the behavioural state of that specific track. As such, the sequence of

dive types within a track was dictated by the behavioural state of that track as a whole.

We set 10 minutes as the track threshold duration to allow sufficient time for a killer whale

to balance its O2 stores [17–19], and ensure that we did not overestimate respiration rates

[3,4,8]. This extended time limit incapsulated the potential for whales to carry an oxygen debt

over multiple dives that is not fully repaid during a single surface interval. Subsequent analysis

only used data calculated over� 10-min tracks to focus on meaningful respiration rates calcu-

lated over� 10-min tracks.

A detailed description of the HHMM model and dive characteristics of individual dives

from drone video are described in S2 Appendix. In brief, we sought to predict three track-level

behavioural states (resting, travelling, and foraging) by first using behavioural state labels iden-

tified through drone video on a subset of tracks (i.e., these were observed labels from drone

video, not unobserved or predicted from the HHMM). We then summarized each individual

dive into a dive type using its maximum dive depth (m), dive duration (s), and surface interval

duration (s) as calculated from the animal-borne tags. These dive types were identified as shal-

low, medium, and deep. Within the HHMM, we used these TDR parameters combined with

known behavioural states observed on drone video to predict the behavioural states of all dive

tracks (Table A in S2 Appendix). The individual logging occurrences we observed and

recorded with the drone were also incorporated into the HHMM model as dive types (similar

to our shallow, medium, and deep dive types); however, the tracks as a whole were labelled as

either resting, travelling, or foraging based on the individual dive types and observed beha-

vioural labels within that track.

Resident killer whales primarily hunt for salmon at deep depths [10]. We therefore created

individual dive-level labels to help the HHMM identify foraging behaviour by visually inspect-

ing the dive profiles and histograms. They revealed three distinct dive types that included dives

less than 7.5 m (shallow), dives between 10–30 m (medium), and dives deeper than 50m

(deep) (Fig 2). As such, we labeled all dives within these thresholds accordingly. If the maxi-

mum depth of a dive occurred between explicitly defined depth categories, we left that dive

unlabelled prior to fitting the HHMM. We labelled any track with at least one “deep” dive

(> 50 m) as foraging because previous studies have shown that deep dives are more often

linked with foraging [10]. Any dive that was deeper than 30 meters and also within 2 minutes

of a previously labelled “deep” dive was also labelled as foraging. This is consistent with dive

depths associated with foraging [10], and meant that we relied on our HHMM to identify

deeper foraging dives when our drone video labels were insufficient. In addition, we labelled

dives with surface intervals > 10 s as logging because all video-labeled logging occurrences
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satisfied this threshold, and all video-labeled non-logging occurrences did not. We incorpo-

rated all known labels into the HHMM in a similar manner to Li et al. [27].

We fit separate HHMMs to the adult male and juvenile killer whale data sets. All HHMM

analyses were done using the momentuHHMM package in R [28]. Dive characteristics input to

the HHMM were maximum dive depth, dive duration, and surface interval duration. Since

dive labels are directly related to dive characteristics, testing for a difference in the means of

any dive characteristics among behavioural states predicted by the HHMM would result in

highly inflated type I error rate [29]. Consequently, we did not analyze dive characteristics per

behavioural state for tracks predicted by the HHMM, and subsequent plots of individual dive

durations were exploratory only.

Error in HHMM predicted behavioural states. We assessed the error of the HHMM in

predicting track behaviour using k-fold cross-validation, where one “fold” in the cross-valida-

tion scheme corresponded to a single whale’s dive profile with k = 11 total whales [30]. For

each whale, a new HHMM was trained using all of the data except for that whale, and the left-

out whale’s behaviour was predicted using the Viterbi algorithm [31] with the newly-trained

HHMM. The true track labels from drone video were then compared with the predicted track

labels generated from the Viterbi algorithm. This procedure predicted the model’s ability to

accurately label the behaviour of a new whale if that whale had no video-generated labels. This

procedure yielded one confusion matrix (contingency matrix) per coarse-scale behavioural

category (foraging, resting, and travelling) per sex and age category (there were two males and

six juveniles with video data). Each of the six contingency matrices included the total number

Fig 2. Histogram of maximum dive depths for HHMM dive types. Note that dive depths are plotted on a log scale for 4 adult male (n = 4955 dives) and 7

juvenile resident killer whales (n = 3163 dives).

https://doi.org/10.1371/journal.pone.0302758.g002
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of video-labelled tracks. That is, error was only assessed on tracks that had video labels (juve-

niles = 66 tracks video-labelled out of 176 total tracks predicted; males = 62 tracks video-

labelled out of 243 total tracks predicted).

Each confusion matrix contained counts of four scenarios: true positives (TP), true nega-

tives (TN), false positives (FP), and false negatives (FN) (see Table 3 for definitions of these

terms). These counts were used to calculate detection (TP rate), false positive rate (FP rate),

precision, specificity (TN rate), and accuracy across behavioural states for both sexes (Table 3).

Detection rate is the proportion of times that the HHMM model correctly determined that the

behaviour had occurred, out of all times that the behaviour occurred. The detection rate was

calculated as TP/(TP+FN). This calculation was repeated separately for each behaviour and

sex. For example, the detection rate for foraging in females is the proportion of foraging tracks

on drone video that were correctly classified as foraging tracks by the HHMM model. A false

positive occurred when the HHMM identified a track as a specific behavioural state, but the

drone video observed any behaviour except that target behaviour. It was calculated as FP/(FP

+TP). Precision was the proportion of times that the HHMM correctly determined that the

behaviour had occurred, out of all times that the HHMM determined that the behaviour

occurred and was calculated as TP/(TP+FP). Specificity, the proportion of times that the

HHMM correctly determined that the behaviour had not occurred, out of all times the behav-

iour had not occurred, was calculated as TN/(TN+FP). Accuracy, the proportion of the total

tracks that the HHMM correctly predicted the behaviour, was calculated as (TP+TN)/(TP+TN

+FP+FN).

Respiration rates. We used a track of dives as the unit of analysis to calculate the average

respiration rate over a physiologically meaningful time span [� 10 min; 3,4,8] while also incor-

porating variation in diving behavioural states observed in the field. Respiration rate (breaths

min-1) was calculated as the total number of respirations (e.g., total number of surface intervals

as we confirmed 1 breath = 1 surface interval) per track divided by the cumulative track dura-

tion on the animal-borne tag. The respiration rates were then compared between track behav-

ioral states within each sex.

All respiration rate analysis was done using the track behavioural states predicted by the

HHMM for all of the dives recorded by the animal-borne tags. We performed a repeated mea-

sure ANOVA using linear mixed-effects models [nlme package, LME; 32] to determine if the

average respiration rate (breath min-1) within a track varied among behavioural states pre-

dicted from the HHMM model (resting, foraging, or travelling). Since the independent

Table 3. Contingency matrix used to assess how well the HHMM predicted the behavioural state of killer whales observed on drone video.

Drone video

observed

(Truth)

HHMM predicted

(Estimate)

Description

True Positive (TP) Yes Yes Both drone video and HHMM identified behaviour of track as foraging.

True Negative

(TN)

No No Both drone video and HHMM identified behaviour of track as any behaviour except foraging.

False Positive (FP) No yes HHMM identified track as foraging, but drone video observed any behaviour except foraging.

False Negative

(FN)

Yes No HHMM identified behaviour of track as any behaviour except foraging, but drone video observed

foraging

Drone video observations of behavioural states (“Truth”) were compared to HHMM predicted behavioural states (“Estimate”) using a k-fold cross-validation on animals

that had concurrent video to yield a confusion matrix (contingency table) per behavioural state for foraging, resting, and travelling tracks. This contingency table

example was used to measure errors in identifying foraging behaviour and was repeated for resting and travelling. Sample size of whales for all behavioural states was

n = 7 juveniles and n = 4 adult males.

https://doi.org/10.1371/journal.pone.0302758.t003
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variable is categorical and we have multiple tracks per individual whale, we included Whale ID

as a random effect. As such, our modelling took into account the dependence in the data gath-

ered from an individual, and also related each animal to other animals by expressing individual

animal variation relative to the mean of the population [33,34].

The statistical significance of behavioural state was determined using a conditional

ANOVA F-test. Model comparisons were performed using a likelihood ratio test (LRT) on

two hierarchically nested models. When models were significant, Tukey post hoc tests with

Bonferroni adjusted p-values were used to compare the means between multiple levels and

identify the behavioural state(s) that differed [mvtnorm and multcomp R libraries; 35,36]. Sta-

tistical significance was set at α = 0.05. Adult males and juveniles were modelled separately for

all HHMM and LME models due to differences in predicted energetics related to body mass.

Dive durations. We divided all individual dive durations on CATS tags into short (< 1

min) or long dives (� 1 min) to explore diving patterns based on behavioural states predicted

by the HHMM. This distinction was for exploratory purposes to give context to calculated res-

piration rates, and was based on the statistical distributions of dive durations, and not on any

physiological rationale. Our 1-minute breakpoint is the same as used by Baird et al. [37] to dif-

ferentiate short and long dives of southern resident killer whale carrying time-depth recorders

—and is very close to the 57.77-second breakpoint that Miller et al. [9] discovered using a log

frequency analysis of all dive durations made by transient killer whales equipped with Dtags.

These two analyses of diving behaviours of killer whales are consistent with our treatment of

the killer whale dive data, and our definitions of short and long dives.

All dive durations were measured directly by time-depth recorders (CATS) and were

grouped according to the behavioural states predicted by the HHMM (see S2 Appendix for

details). We calculated mean dive durations of short and long dives, as well as the duration of

all dives by behavioural states for males and juveniles (see S1 Table for values). Note that the

distinction between short and long dives was not included in the HHMM or respiration rate

analysis. Note also that respiration rate analysis was done on a different level of the dataset

(i.e., only on tracks of dives> 10 min, and not on individual dives).

Estimated oxygen consumption rate. We calculated the rate of oxygen consumption

(VO2, L O2 min -1) for use in bioenergetic models and comparison with published values [2,7].

This was done using physiological data from trained killer whales [3], along with predicted

body masses (see S3 Appendix) and mass-specific tidal volumes (VT). In brief, we determined

body lengths for each of the animals we tagged in 2020 using a Gompertz growth model per sex

[38]. We then estimated body mass (kg) as a function of body length (cm) for each individual

whale [39]—and matched the tagged whales in our study to whales in Kriete (Table 16 in Kriete

[3]) that were within 15% similar body mass and also the same age class per sex to yield pre-

dicted mass-specific VT per whale per behavioural state (Table 1 in Kriete [3]). Mass-specific VT

also yielded estimates of mass-specific oxygen extraction from inhaled air (EO2) and the concen-

tration of oxygen dissolved in blood and tissue (TO2) as well. Resting EO2 came from trained

killer whales while they rested (activity level 1)—while foraging and travelling EO2 were esti-

mated from trained animals undertaking light to moderate swimming and shallow diving activ-

ities (activity level 2, Table 9 in Kriete [3]). Animals A113, I129, I145, I107, and D21 were

excluded from VO2 calculations because their predicted body masses were not within 15% of

the predicted body masses and VT of the killer whales in Kriete [3]. Additional details regarding

calculations, as well as predicted body length (cm), predicted body mass (kg), and mass-specific

tidal volume (VT) per whale used to calculate VO2 are contained in S3 Appendix.
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Results

Summary of data collected

Drone video data subsampled 6% of the 8,118 total dives with available time-depth data across

all 11 killer whales (Table 1). For juveniles, the majority of behavioural states observed on the

drone video at the level of individual dives were travelling (78.1%), followed by resting

(12.9%), foraging (7.2%), and logging (1.8%, n = 389 total dives). In contrast, foraging was

observed more often on drone video for adult males (58.6%) compared to the other beha-

vioural states (rest = 37.9%, travel = 2.3%, logging = 1.2%, n = 87 dives).

Activity budgets from drone video are a discontinuous subsample of the total behaviours

on animal-borne tags. For juveniles, we used 389 behavioural labels from the drone videos to

inform the HHMM model, which yielded 191 total tracks prior to filtering for only tracks that

were� 10 min. For the adult males, 87 behavioural labels from drone video were used to

inform the HHMM model, which yielded 279 total tracks prior to 10-minute track duration

filtering.

HHMM predicted track behavioural states

For juveniles, the HHMM identified 191 tracks from 3,153 individual dives (n = 7 whales,

Table 4 and Fig 3) of which there were fewer occurrences of foraging (n = 40 tracks) compared

to travelling (n = 75) and resting (n = 76). In contrast, the male HHMM classified 4,955 indi-

vidual dives into 279 behavioural-specific tracks (n = 4 whales, Table 4 and Fig 3) of which

occurrences of resting (n = 100 tracks) and travelling (n = 103) were also similar to one

another, but occurred more frequently than foraging (n = 76). Excluding tracks< 10 minutes

in cumulative duration reduced track sample sizes by 8–13% but did not considerably affect

the relative numbers of resting, travelling, and foraging tracks available for further analysis of

male and juvenile respiration rates. Activity budgets at the level of the tracks showed both

groups of killer whales spent similar proportions of time resting (juveniles = 39.8%,

males = 37.0%) and travelling (juveniles = 38.6%, males = 37.5%), and less time foraging (juve-

niles = 21.6%, males = 25.5%, Table 4).

Error in HHMM predicted behavioural states

A k-fold cross-validation that compared the “true” behavioural state observed on drone video

to the “estimated” behaviour predicted by the HHMM indicated that the model reliably pre-

dicted when a killer whale was foraging, resting, or travelling at the level of the track with an

Table 4. Total number of tracks and activity budget per behavioural state of resident killer whales predicted by the hierarchical hidden Markov models (HHMM).

Behavioural state Predicted by HHMM (counts) Activity budget (%) Cumulative duration of tracks

(� 10 min)

Total � 10 min Mean Mean S.D. Range

Juvenile Resting 76 70 39.8 11.6 1.5 10.0–16.0

Foraging 40 38 21.6 11.2 1.6 10.0–17.2

Travelling 75 68 38.6 10.6 1.1 10.0–15.0

Adult Male Resting 100 90 37.0 10.9 1.0 10.0–13.9

Foraging 76 62 25.5 11.1 1.7 10.0–16.9

Travelling 103 91 37.5 10.3 0.3 10.0–11.3

Only tracks that were� 10.0 minutes were used in the subsequent respiration rate analysis (juveniles = 176, and adult males = 243 tracks). Sample size of whales for all

behaviours was n = 7 juveniles and n = 4 adult males.

https://doi.org/10.1371/journal.pone.0302758.t004
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accuracy of 85% for juveniles and 96–98% for males (Table 5). However, for the juveniles,

detection rate (true positive rate) was highest for foraging (95%), followed by travelling (71%),

and then resting (56%). For males, detection rate was slightly higher for resting (100%) com-

pared to foraging (96%), but this was influenced by low or absent numbers of false positives

Fig 3. Example of a dive-depth profile from adult male whale D21 illustrating depth categories and track behavioural states predicted by the HHMM.

Panel A represents the depth categories used to classify behavioural states within the HHMM. On D21, sample sizes were logging (n = 27), shallow (< 7.5m,

n = 1,687) medium (10–30 m, n = 87), and deep (> 50m, n = 11, see S2 Appendix for details). Panel B represents predicted behavioural states by the HHMM

for resting (n = 550 dives), travelling (n = 1005 dives), and foraging (n = 257 dives) on this animal. This adult male whale made 1812 total individual dives

recorded on the animal-borne tag.

https://doi.org/10.1371/journal.pone.0302758.g003
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and false negatives across all behaviours. There were no true positive predictions for males

travelling, and consequently no detection rate could be calculated for travelling males. It is

important to note that although we had more juvenile killer whales with video than males (6 vs

2 whales, Table 1), we had more individual dives (3,163 vs. 4,955) and more total tracks for

males than juveniles (243 vs 176, Table 3).

Respiration rates

The killer whales observed on the drone video breathed once per surface interval for all beha-

vioural states of interest (resting, travelling, and foraging). The only exception was logging

where the whales took more than one breath per surfacing (mean logging = 2.1, range = 2.0–

3.0 breaths). Respiration rate (i.e., the number of surface intervals divided by track duration)

varied significantly among track behaviours for juveniles (Fig 4, LRT = 11.28, p = 0.004) and

males (Fig 4, LRT = 64.03, p< 0.001). Mean respiration rate for juveniles was highest during

travelling tracks (1.6) compared to foraging (1.5) and resting (1.2 breaths min-1). Males

showed similar patterns with the highest mean respiration rate occurring during travelling

(1.8) followed by foraging (1.7) and resting (1.3 breaths min-1).

Post-hoc Tukey tests, indicated that average respiration rates of travelling tracks differed

from those of resting tracks for juveniles (Tukey, p = 0.003), while for males such differences

were across travelling and both foraging (Tukey, p< 0.001) and resting (Tukey, p< 0.001).

All other comparisons in the Tukey tests showed no significant differences between juveniles

and males. We did not make any further comparisons between males and juveniles results

because we used a separate HHMM to predict their track behavioural states.

Dive durations

Individual dive durations for both adult male and juvenile whales ranged from a few seconds

to as long as 8.5 minutes for the males, and 7.7 minutes for the juveniles (all dives recorded by

the animal-borne tags as shown in Figs 5 and 6)—and averaged 0.5 min (32 sec, SD = 0.78,

n = 4,955 individual dives) for males and 0.6 min (36 sec, SD = 0.84, n = 3,163 individual

dives) for juveniles. The majority of all individual dives on animal-borne tags were< 1 min

for both juveniles and males (89% of juvenile dives, and 91% of all individual male dives on

animal-borne tags).

Table 5. Summary of HHMM measures of error predicting behavioural state of killer whales relative to drone video observations.

Total count Measures of error (%)

TP* FN* FP* TN* Detection FP Rate Precision Specificity Accuracy

Juvenile Resting 5 4 6 51 56 55 45 89 85

Foraging 21 1 9 35 95 30 70 80 85

Travelling 25 10 0 31 71 0 100 100 85

Adult

Male

Resting 5 0 1 56 100 17 83 98 98

Foraging 55 2 0 5 96 0 100 100 97

Travelling 0 0 1 61 NA 100 0 98 98

True behavioural state labels from drone videos were compared with predicted labels generated from the HHMM to assess the model’s ability to accurately label the

behaviour of a new whale without video-generated labels. Measures of error were calculated at the level of the track as percentages and included detection (TP/(TP

+FN)), false positive rate (FP/(FP+TP)), precision (TP/(TP+FP)) specificity (TN/(TN+FP)) and accuracy ((TP+TN)/(TP+TN+FP+FN)). Error was only assessed on

tracks that had video labels (juveniles = 66 video-labelled out of 176 total tracks predicted; adult males = 62 video-labelled out of 243 total tracks predicted). Sample size

of whales for all behaviours was n = 7 juveniles and n = 4 adult males.
* TP = true positive, FN = false negative, FP = false positive, TN = true negative. See Table 3.

https://doi.org/10.1371/journal.pone.0302758.t005

PLOS ONE Killer whale respiration rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0302758 May 15, 2024 12 / 26

https://doi.org/10.1371/journal.pone.0302758.t005
https://doi.org/10.1371/journal.pone.0302758


In terms of dives� 1 minute (Fig 5 and S1 Table), the adult males we tagged made longer

foraging dives on average (mean = 3.8 min for males vs 2.9 min for juveniles), and had shorter

travelling dives than did the juveniles (mean = 1.5 vs 2.1 min), but had similar individual rest-

ing dives (mean = 2.6 vs 2.7 min). Long dives (i.e.,� 1 minute) accounted for 11% of the total

dives made by juveniles (n = 354 long dives) and 9% of the total dives made by males (n = 440

long dives). Individual dive durations for adult males were also more variable compared to

those of juveniles for all behaviours (i.e., while foraging, resting or travelling; Fig 5). In terms

of long dives (i.e.,�1 min), juvenile dive durations appeared to conform more to a central

Fig 4. Respiration rates (breaths min-1) of 7 juvenile and 4 male resident killer whales while resting, foraging, and travelling. The number of tracks were

resting (70), foraging (38), and travelling (68) for juveniles compared to resting (90), foraging (62), and travelling (68) for adult males. Sample size of whales

across all behaviours was n = 7 juveniles and n = 4 adult males.

https://doi.org/10.1371/journal.pone.0302758.g004
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tendency than did those of males for all behavioural states. However, adult males and juveniles

were consistent in terms of making longer foraging dives on average than resting dives, which

were in turn longer on average than dives made when travelling.

Shorter duration dives (< 1 min) tended to look more normally distributed while travelling,

but were skewed while foraging (Fig 6). The distribution of short resting dives made by adult

males and juveniles fell between those they made while foraging and travelling. Overall, how-

ever, the distribution of short-duration dives (< 1 min) for all three behavioural states were

consistent between adult males and juveniles (Fig 6), unlike their longer duration dives (�1

min) that showed greater variability among behavioural states and among males and juveniles

Fig 5. Individual long dive durations (� 1 minute) of 7 juvenile and 4 adult male resident killer whales for different behavioural states (foraging, resting,

and travelling). Individual dive duration was recorded by the CATS tags with behavioural state as predicted by the HHMM. Long dives include 11% of the

total dives in juveniles (n = 354 long dives) and 9% of the total dives in adult males (n = 440 long dives). Sample sizes for total individual dives� 1 minute were

n = 76-foraging, 190-resting, and 88-travelling dives for juveniles; and n = 93-foraging, 241-resting, 106-travelling dives for adult males.

https://doi.org/10.1371/journal.pone.0302758.g005
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(Fig 5). The average durations of short dives were similar between adult males and juveniles,

but became increasingly shorter as the behaviours of the whales shifted from travelling (26 and

25 sec for males and juveniles, respectively), to foraging (19 vs 17 sec), and resting (17 vs 17

sec) (S1 Table).

In terms of all dives combined (i.e., short + long dives), average dive times of adult males

were 28 sec while travelling, 31 sec while foraging, and 38 sec while resting (S1 Table)—all of

which were longer for each behavioural state than for juveniles, which averaged 32 sec while

Fig 6. Distributions of individual dive durations for short dives (< 1 minute) from CATS tags with behavioural state predicted by HHMM (bins = 4

seconds). Individual dive duration was recorded by the CATS tags with behavioural state predicted by the HHMM. Short dives were 89% of the total dives in

juveniles (n = 2899 short dives) and 91% of the total dives in adult males (n = 4515 short dives). Sample sizes for total individual short dives< 1 minute are

n = 603-foraging, 950-resting, and 1256-travelling dives for juveniles; and n = 1340-foraging, 1296-resting, 1879-travelling dives for adult males.

https://doi.org/10.1371/journal.pone.0302758.g006
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travelling, 36 sec while foraging, and 31 sec while resting. In terms of the distribution of dive

types by behavioural categories, the greatest proportion of long dives occurred while the killer

whales travelled (15.7% for adult males, and 16.7% for juveniles), and the smallest proportion

of long dives occurred while they foraged (5.3% for males vs 6.5% for juveniles). The most

notable difference between adult male and juvenile dive durations were associated with resting.

Males made proportionally fewer long dives while resting than did juveniles (6.5% vs 11.2%).

Estimated oxygen consumption rate

We calculated VO2 only for animals that had predicted body masses within 15% of the body

masses and matched age classes available in Kriete [3, see S3 Appendix for details]. Calculated

VO2 rates ranged from 2.5–18.3 L O2 min-1 for juveniles and 14.3–59.8 for adult males across

all behavioural states (Table 6). Mean calculated VO2 for juveniles was highest while travelling

(7.4), followed by foraging (7.3), and was lowest for resting (6.7 L O2 min-1
, Table 6,

LRT = 13.26, p = 0.0013). Post hoc Tukey tests showed that only foraging VO2 differed from

resting (p< 0.001). All other comparisons in the Tukey tests within juveniles were not signifi-

cant indicating that the most prominent difference was only between resting and foraging. For

adult males, VO2 significantly varied among behavioural states (LRT = 110.49, p< 0.001) and

was significantly higher for travelling (43.6) followed by foraging (35.2), then resting (25.8 L

O2 min-1
, Table 6, Tukey, p< 0.001 for all comparisons).

Discussion

Using drones and simultaneously deployed biologging devices to quantify respiration rates

and associated behavioural states confirmed that killer whales take a single breath per surfacing

while travelling, foraging and resting. Thus, energy expenditure can be indirectly estimated

from an assumed amount of oxygen exchange per breath—and from using the numbers of

Table 6. Example of calculated oxygen consumption rates (VO2) and respiration rates of 6 resident killer whales derived from behavioural data at the level of the

track with mass-specific tidal volumes per sex and age class.

Behavioural state Tracks Calculated VO2

(L O2 min -1)b
Respiration rates used in VO2 calculations

(breaths min-1)a

N Mean S.D. Range Mean S.D. Range

Juvenile Resting 38 6.7 4.0 2.5–18.3 1.2 0.3 0.7–1.8

Foraging 14 7.3 1.9 3.9–12.1 1.5 0.3 0.9–2.0

Travelling 28 7.4 1.8 3.7–11.9 1.4 0.3 0.7–1.9

Adult Male Resting 47 25.8 5.1 14.3–35.0 1.4 0.3 0.8–1.9

Foragingc 7 35.2 9.1 19.3–44.1 1.6 0.4 0.9–2.0

Travelling 35 43.6 5.8 32.0–59.8 2.0 0.3 1.5–2.7

Sample size of whales for all behaviours was n = 4 juveniles and n = 2 adult malesa. See Table in S3 Appendix for details on calculations as well as predicted body length

(cm), predicted body mass (kg), and mass-specific tidal volume (VT) per whale used to calculate VO2.
a These respiration rates are different from Fig 4 and the LME analysis because they only include a subset of animals that met VO2 criteria. Some animals (A113, I129,

I145, I107, and D21) were excluded from VO2 calculations and this subset of respiration rate estimates because their predicted body masses were not within 15% of the

predicted body masses and sex-specific VT of the killer whales in Kriete [3].
b Oxygen consumption (VO2, L O2 min-1) was calculated per track (only tracks� 10 min cumulative duration) using Equation 1 in Roos et al. [2] with mass-specific

values originally measured by Kriete [3]. Maximum tidal lung volume varied by predicted body mass and activity level (Table 1 in Kriete [3]). Mean oxygen extraction

from inhaled air (EO2) for resting was from activity level 1, and foraging and travelling was from activity level 2 per sex per animal of similar body mass (Table 9 in

Kriete [3]). For adult males only, VT and EO2 for activity level 2 was averaged from activity levels 1 and 3 values for the killer whale named Hyak because it was not

directly measured in Kriete [3].
c VO2 for foraging males only includes whale L87 because L88 had no foraging tracks.

https://doi.org/10.1371/journal.pone.0302758.t006
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surface intervals recorded by time-depth recorders as a proxy for numbers of breaths taken. In

addition, we found that the mean respiration rates estimated from dive data per track for juve-

niles and adult males while resting, foraging, and travelling were consistent with those

reported for other killer whales. We also found that HHMMs can accurately predict beha-

vioural states of unknown dive types but needed to be informed with video verified behaviours

to yield biologically meaningful categories. Lastly, we found that VO2 predicted from respira-

tion rate significantly varied among behaviours for both adult males and juveniles with both

age categories of killer whales spending significantly less energy while resting, and juveniles

expending less energy overall than the larger males.

HHMM predicted track behavioural states

Hidden Markov models have previously been used to predict and categorize movement pat-

terns of several cetacean species. Hidden Markov models have been used to study the move-

ment patterns of blue whales [Balaenoptera musculus; 16], long-finned pilot whales

[Globicephala melas; 13,40], harbour porpoises [Phocoena phocoena; 14], sperm whales [Phys-
eter macrocephalus; 40], humpback whales [Megaptera novaeangliae; 40], northern bottlenose

whales [Hyperoodon ampullatus; 40], and killer whales [12,15,20,41]. These studies demon-

strate that HMMs are a robust method to categorize behaviours using movement data in ceta-

ceans. However, few studies have used independent data to validate the behavioural states

predicted by the HMM. We built on the work of these studies by validating all behavioural

states from our HHMMs using drone observations and performing a full cross-validation

analysis.

Using HHMMs allowed us to increase our statistical power by expanding the number of

total dives analyzed while also defining longer duration tracks that included multiple dives to

calculate respiration rates. Using drone videos, we only had 476 discontinuous individual

dives with observed behavioural states. However, by using drone video to inform the

HHMMs, we predicted behavioural states and activity-specific energetics on over 8,000 indi-

vidual dives with high accuracy (Table 5). Our HHMMs also allowed us to group the 8,000

dives into tracks of at least 10 min to calculate respiration rates over physiologically relevant

durations. Thus, using HHMMs as a statistical tool coupled with a subset of drone videos

allowed us to predict continuous behavioural states of thousands of previously unknown dives

on a free-ranging cetacean.

Our cross-validation comparing the HHMM predictions to the “truth” on drone video indi-

cated that the HHMM had high accuracy, low false positive rates for most behaviours, and

high measures of detection indicating that this method is a reliable tool to predict behavioural

states and respirations from dive-depth data. Our analysis assumed that all of the predicted

behavioural states per track were 100% accurate prior to calculating respiration rate per track.

This was a reasonable assumption based on the calculated measures of error (Table 5). Detec-

tion was relatively high (71–100%) except in resting juveniles (56%). The lower detection rate

for resting juveniles reflects the low total numbers of true positive and false negatives. The

HHMM was more reliable at detecting foraging compared to travelling in juvenile whales.

This makes sense because we prioritized building the HHMM to detect foraging when deep

foraging dives could not be identified from drone video alone. Overall, the false positive rate

was low except for juveniles that were resting (55%) and males that were travelling (100%). For

travelling males, the high false positive rate was skewed by the absence of true positives and

false negatives which prevented calculating detection. Notably, all of the measures of error

were influenced by the total number of tracks per behaviour and how many of those individual
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dives were labelled on drone video per behaviour. In the future, the HHMM could be opti-

mized to maximize or minimize whichever measure or error is of most interest.

Respiration rates

The mean respiration rates we recorded for juveniles (1.2–1.6 breaths min-1) and adult males

(1.3–1.8 breaths min-1) are similar to those reported over similar durations for other adult

killer whales (mean respiration rates of 1.6–1.7 breaths min-1 while foraging and travelling, 1.6

breaths min-1 while foraging, 1.4 travelling, and 1.0 resting) [4,8]. However, the whales we

studied incurred the highest respiration rates while travelling (1.6 juveniles; 1.8 breaths min-1

males), followed by foraging (1.5 juveniles; 1.7 breaths min-1 males), and then resting (1.2 juve-

niles; 1.3 breath min-1 males).

We had expected foraging costs to have a higher mean respiration rate compared to travel-

ling because foraging presumably requires diving to greater depths for longer periods of time,

more non-uniform dive paths, higher levels of body rotations, and greater swimming speeds

to capture prey [10]. We also expected oxygen uptake per breath to be greater during foraging

relative to other behaviours because each breath taken while foraging reduces the time spent

foraging and should therefore carry a high cost compared to breathing while resting and mov-

ing slowly near the surface. However, counter to expectations, we found travelling was more

energetically expensive than foraging due perhaps to the increased drag and buoyancy costs

associated with making shallow dives. Killer whales may also breath less frequently while for-

aging to optimize their time at depth to encounter and capture prey, and therefore incur an

oxygen debt that is not ultimately fully paid back until they travel and rest [17,42–45].

Although we used tracks of�10 minutes to allow for oxygen and carbon dioxide balancing, it

may not have been sufficient to remove a potential oxygen debt in all tracks. Thus, the 10-min-

ute tracks we used may not have been long enough to include all recovery breaths after deeper

foraging dives (see S2 Appendix for more details), and should therefore be considered a mini-

mum foraging respiration rate.

Overall, the adult males had higher mean respiration rates in all behavioural states com-

pared to juveniles as expected because of differences in oxygen storage capacity (lung size) and

oxygen use related to differences in body size. However, some of the differences in respiration

rates between juveniles and adult males are also likely attributable to behavioural differences

between the two age classes as previously discussed.

We were able to incorporate aerial observations of behaviour and breathing with detailed

TDR data to yield a more complete picture of whale underwater behaviours. Previous studies

calculating respiration rates of killer whales have primarily used surface-based observations

from either boats or land to identify diving behaviours and count breaths [4,8]. However, the

drone video with TDR data allowed us to directly observe and assign behaviour with greater

confidence. It also allowed us to view the same behavioural clip multiple times and at slower

speeds. Combining information from drone videos with animal-borne tag data allowed us to

build and verify HHMMs to predict behaviours and therefore calculate respiration rates on a

large sample of dives. The similarities in the range of respiration rates that we and others have

obtained highlights the viability of using HHMMs to calculate respiration rates and determine

behavioural states.

Dive durations

Dive durations differed according to whether the whales were travelling, resting or foraging

(Figs 5 and 6 and S1 Table). However, the different distributions of dive durations between

behavioural states make physiological sense and give confidence that the HHMM correctly
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predicted the three basic behavioural states. For example, the short travelling dives were nor-

mally distributed (Fig 6), consistent with animals swimming in a predictable sustainable man-

ner. In contrast, the distribution of short foraging dives was highly skewed (Fig 6), consistent

with whales having depleted their O2 stores and built up CO2 as they extended themselves

searching and pursuing prey—and then resurfaced to take short breaths that partially replen-

ished their O2 stores and offloaded some CO2 before returning quickly to depth to continue

foraging (see [44] for discussion of this trade-off pertaining to Steller sea lions).

Our findings (Figs 2 and 5 and 6) are also consistent with those of others showing that killer

whales of all ecotypes primarily make short (<1 min), shallow (<10 m) dives—and compara-

tively fewer long (>1 min), deep (>10 m) dives [8–10,37,46–48]. In our case, short duration

dives occurred 10 times more frequently than long dives, and constituted about 90% of all the

dives we recorded. Variability in the duration of short dives differed by behavioural state—and

was greatest while adult males and juveniles foraged, and least variable while they travelled

(i.e., dive times were the most consistent)—with short resting dives falling in between (based

on the coefficients of variation for each behavioural states, S1 Table).

The long foraging dives we recorded for males (3.8 min average) were longer than those

reported by others (2.8 min mean by Baird et al. [37], and 2.9 min median by Wright et al.

[10]), which might reflect differences in the relative availability of prey among studies. These

estimates are nevertheless of similar magnitudes, as are the mean durations of short dives

made by foraging males (17.4 sec) compared to those reported by others (e.g., 19.8 sec median;

Wright et al. [10]), which gives added confidence in our methods and calculations. Separating

dives into short and long dives using a 1-minute breakpoint reflects the bimodal nature of

killer whale dive patterns, and provides a means to calculate meaningful measures of dive

durations that can be used to assess the availability of prey and the impacts of human activities

on killer whales. This splitting of dive types is superior to determining average dive times for

all dives combined, which were only about 30 sec when pooled due to the non-normality of

the complete series of dives, and the overly high proportion of short dives [e.g., 8; S1 Table].

Interestingly, all of the dives made by the 11 animals we studied were shorter than the calcu-

lated aerobic dive limit (cADL) for killer whales (all of the dives were< 8.5 minutes). The

cADL for killer whales based on scaled measurements from bottlenose dolphins [49] was 10.2

minutes for females and 11.8 minutes for males [9]—while the resting-surface cADL for a

trained adult male killer whale based on serial blood lactate measurements was 13.3 minutes

[50]. Although we do not know if the killer whales in our study were diving with a pronounced

oxygen debt or whether they partially replenished their oxygen stores between dives, delphi-

nids are believed to rarely exceed their aerobic capacity, and are believed to use anaerobic

metabolism sparingly to prolong dives if necessary after encountering prey [51]. However,

smaller individuals such as juvenile killer whales are likely to be more aerobically challenged

than the larger and older individuals—and adult males are likely to have considerably more

reserves to pursue challenging prey compared to juveniles [9].

The differences in individual dive durations between adult males and juveniles while forag-

ing and travelling likely reflect differences in age class, social relationships, sample sizes per

sex, and oxygen storage capacities related to body size. The majority of the juveniles in our

study (86%) were skewed towards young individuals < 13 years old (oldest female was 14), but

all of the adult males were> 13 years (15–28 years, Table 1)—with predicted body masses

ranging from 1,252–2,555 kg for juveniles and 3,382–4,172 kg for males (Table A in S3 Appen-

dix). The greater variability in durations of the longer dives of juveniles compared to adult

males may also reflect behavioral differences associated with social responsibilities and age-

based relationships of adult male and juvenile resident killer whales (i.e., prey sharing). Some
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of the differences between adult males and juveniles, as well as among individuals (particularly

during travelling) could also reflect differences among pods (Table 1).

Estimated oxygen consumption rate

Our calculated VO2 varied significantly among behavioural states for both juveniles and adult

males—and are similar to those previously reported for killer whales of similar ages and sexes.

For juveniles, the mean VO2 values we calculated across all behavioural states (2.5–18.3 L O2

min-1, Table 6) were comparable to the ranges reported for 1 trained juvenile killer whale

across different activity states (aged 11 years old, approximately 6–48 L O2 min-1, extrapolated

from Fig 9 in Kriete [3]). For adult males, our calculated VO2 values (15.8–86.1 L O2 min-1,

Table 6) were slightly higher than those observed for trained killer whales across activity states

(approximately 6–72 L O2 min-1, extrapolated from Figs 6 and 7 in Kriete [3]). Other studies

that have calculated VO2 based on speed and respiration rates have found VO2 values ranging

from 18–30 L O2 min-1 for a mix of juveniles and adult females, and 30–60 L O2 min-1 for

adult male killer whales (values extrapolated from Figs 3A and 3D for Model 1 in Roos et al.

[2] using fixed TO2 values from Kriete [3]). Of these calculated VO2 values, we suspect those

for juveniles are more robust than for adult males because we had more juvenile whales com-

pared to adult males (7 vs 4 whales). However, the sample size of total tracks was greater for

males compared with juveniles (243 vs. 176).

The applicability of using mass-specific tidal volumes to calculate VO2 hinges on the avail-

ability of activity specific VT and EO2 from similarly sized animals of the same sex. Currently

the only published source of this information in killer whales is Kriete [3], which lacks a wide

scope in predicted body masses, especially for male whales. The body masses of juveniles in

our study generally matched the predicted body masses of animals with available mass-specific

VT (Table A in S3 Appendix). However, only 2 of the 4 adult males in our study were within

15% of the predicted body masses and mass-specific VT available (Table A in S3 Appendix).

Using mass-specific VT and EO2 would ideally improve the accuracy of these calculations, but

data are currently lacking to do this on a wide range of body sizes per sex and age class [3].

This shortcoming highlights the need for more current mass-specific estimates of respiratory

and physiological variables on animals with a wider range of body sizes and ages.

Study limitations

Sampling limitations. In terms of population demographics, our sampled animals were

skewed towards immature animals. The majority of the animals in our study were immature

and of unknown sex (5 out of 11 whales were unknown and < 13 years old, Table 1). For our

study, we grouped our one young adult female into our juvenile category as it is not possible to

do an HHMM cross-validation or compare respiration rates among females with only1 adult

female. While this choice was not ideal, we note that R48 was a very young adult based on

female killer whales reaching maturity between 12–17 years of age once they have had their

first calf. Based on R48’s age and size, it is reasonable to assume that her behaviour and physi-

ology were similar to the other juveniles in the HHMM as shown by the similar dive profiles of

R48 and R58 (see S2 Appendix for additional explanation concerning our sex and age class

grouping decisions). We had more juvenile animals than adult males, but more total dives and

total tracks for the males than juveniles, credited largely to an overnight deployment on D21

with 1,812 dives and a longer deployment on I107. The LME models on respiration rate

accounted for unbalanced samples between males and juveniles and among behavioral states

with whale as a random effect.
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The primary constraint we faced in sampling deeper dives with drone video was the chal-

lenge of the drone pilot to track and view the surfacing of focal animals following longer and

deeper dives (because animals making deep dives usually surfaced out of drone view). The

maximum dive depths recorded by animal-borne tags for foraging dives that also had accom-

panying drone video footage (range 0.6–58m, Table A in S2 Appendix) were substantially less

than the maximum dive depths records on our animal-borne tags (range = 0.5–317 m). As a

consequence, the drone video data collected were likely biased towards sampling shallower

dives.

HHMM and LME limitations. Our HHMMs make several assumptions that may have

been violated in this dataset. First, the HHMMs treated a behavioural track as the shortest

sequence of dives that lasted for at least 10 minutes. We selected this minimum track duration

because previous research on killer whales has shown that calculating respiration rates on

shorter durations is biased towards overestimating breathing rates [3,4,8]. However, the true

underlying behaviour of a killer whale may have changed within the pre-defined “track of

dives”, which may have resulted in errors in our parameter and behavioural estimates. Future

studies may allow the coarse-scale behavioural state to change at more flexible intervals than

the strict 10-minute divisions we set here.

The HHMMs also assumed that the behaviours of all whales of the same age class were

identical to one another. However, behaviour often varies between individuals of the same age

class. Future studies may incorporate random effects into the HHMMs to account for differ-

ences in behaviour among individuals [52]. While our HHMMs assumed that a given dive

type (shallow, medium, or deep) had the same emission distribution between all behavioural

states, the duration of short dives appears to vary among behavioural states (Fig 6). Future

studies can explicitly model the difference in the distribution of dive duration among beha-

vioural states.

The LME model and calculation of respiration rates assumes that the HHMM is completely

accurate in predicting the track behaviour. Our cross-validation results showed that the

HHMM had an accuracy of 85–98%, supporting the use of this simplifying assumption

(Table 5). However, these cross-validation results indicate that there is unaccounted uncer-

tainty in behavioural state predictions, and error metrics associated with respiration rate

should be interpreted conservatively.

Oxygen consumption assumptions and limitations. We made several reasonable

assumptions to calculate VO2 from respiration rate as has been done in other studies of large

cetaceans [4,53–55]. For example, we assumed that every breath had a constant VT, EO2 and

consequently fixed TO2 per breath. We also had to make assumptions to predict oxygen con-

sumption from respiration rate that reflect the challenges of measuring physiological variables

on free-ranging cetaceans—while recognizing that the physiological assumptions required to

calculate VO2 from respiration rate vary by age, and activity intensity within each behavioural

state [6]. Thus, while we assumed that maximum VT per breath was likely met during higher

energy activities, we recognize that it may be more reasonable to assume that VT and EO2 are

constant for behaviours that are less energetically demanding or exclude deep dives such as

logging or resting. We attempted to correct for such considerations by using specific EO2 esti-

mates that corresponded to the behavioural state definitions instead of applying the same EO2

and TO2 to all behaviours. In the future, direct measurements of O2 exchange from whales of a

wide demographic range engaged in diverse behaviors will be needed to validate our estimates.
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Application of findings

For the purposes of estimating respirations from only surface intervals recorded by TDR data,

the assumption that one breath is equal to one surface interval is valid for resting, foraging,

and travelling behavioural states. The only behavioural state that did not have one breath per

surface interval was logging, which was rare (1.7%) and occurred at a frequency of 2–3 breaths

per single surface interval. However, this may not be a realistic estimate given the relatively

few intervals of logging we observed, and the likelihood that there may be more variability in

the time that killer whales can spend motionless than what we were able to observe. Neverthe-

less, we can safely conclude that killer whales take more than one breath per surface interval

while logging, unlike when they are travelling, foraging, and resting.

The criteria used to define dive phases has a significant influence on estimated surface inter-

val times as well as on the total number of dives, dive duration, and dive depth within a track

[56]. It therefore needs to be given careful consideration when interpreting respiration rate

and behavioural data. The minimum depth threshold used to define the start and end of a dive

is the second step in defining dive phases (after zero-offset correction), but selected values vary

widely among studies even for the same species. Studies that focus on surface behaviours and

respirations often use a shallower minimum dive threshold than those that focus on dive

behaviour at depth [10,40,56].

Our analysis of the drone footage and TDR data indicate that the minimum dive depth

threshold for killer whales should be 0.5 m (Fig 2). This is shallower than the deeper minimum

dive depth thresholds used in others studies of killer whales of 1.0 m [10], 1.5 m [56], and *1–

2 m (dive threshold visually inferred from Fig 2 “shallow dives” [2,9]). We chose 0.5 m as the

minimum dive threshold because it allowed us to accurately match all of the surface intervals

and associated breaths on drone video to the animal-borne tag (tested depths: 0.5–2.0 m).

Deeper thresholds excluded some of the surface intervals which would have underestimated

respiration rates in our study. We suggest using a shallower minimum dive threshold when

estimating respiration rates from TDR data because it captures all respirations for resting, trav-

elling, logging, and foraging.

The HHMM trained in our study can be used to accurately predict behavioural states and

total respirations per behaviour of unknown dives (i.e., dives without drone video) from his-

torical or future TDR data. We tested the HHMMs ability to predict behavioural states on

unknown dives (including 3 animals that had no drone video available), and the HHMM still

had reasonable error metrics indicating the robustness of this statistical tool. The HHMM was

trained and validated with video, and can now be applied to time-depth datasets to identify

resting, travel, foraging, or logging behaviours on TDR data. Concurrent use of drones, biolog-

ging devices, and Hidden Markov models are a useful means to accurately quantify respiration

rates, behavioural states, and energetics for killer whales.

Conclusions

The primary goal of our study was to calculate behavioural-specific respiration rates needed to

estimate energy requirements of killer whales as a function of time spent resting, travelling and

foraging. Combining video of verified behaviours from the air with the predicted behavioural

states derived from HHMM found that that killer whales breathe once per surface interval and

that killer whales breathe at faster rates while travelling than when foraging and resting.

While our findings provide a means to derive respiration-based estimates of energy expendi-

ture from biologging data, the HHMM methods we developed and validated have broader

implications. Most notably, they revealed that the minimum dive threshold when processing

dive data (used to define the start and end of a dive, and define dive phases from time-depth-
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data) should be 0.5 m, which is much shallower than the 1–2 m threshold depths used in other

published studies [10,40,56]. Deeper dive depth thresholds underestimate total surface intervals,

total breaths, VO2, and ultimately underestimates the predicted energy requirements of killer

whales. A second important methodological outcome from our study was the development of a

refined and validated HHMM that has a high degree of accuracy in determining what killer

whales do based solely on dive-depth dive data (i.e., resting, travelling, and foraging).

Having concurrent drone video and underwater TDR data to assess errors and validate

model predictions were key to being able to quantify biologically meaningful behaviors from

killer whale dive data. It has yielded a powerful statistical tool that can accurately determine

activity budgets from dive-depth data—and provides a means to assess how changes in condi-

tions have affected energetic costs and how killer whales spend their time.
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